Quasineutral limit of the pressureless Euler–Poisson equation
نویسندگان
چکیده
منابع مشابه
The quasineutral limit in the quantum drift-diffusion equations
The quasineutral limit in the transient quantum drift-diffusion equations in one space dimension is rigorously proved. The model consists of a fourth-order parabolic equation for the electron density, including the quantum Bohm potential, coupled to the Poisson equation for the electrostatic potential. The equations are supplemented with Dirichlet-Neumann boundary conditions. For the proof unif...
متن کاملQuasineutral Limit of the Electro-diffusion Model Arising in Electrohydrodynamics
The electro-diffusion model, which arises in electrohydrodynamics, is a coupling between the Nernst-Planck-Poisson system and the incompressible Navier-Stokes equations. For the generally smooth doping profile, the quasineutral limit (zero-Debye-length limit) is justified rigorously in Sobolev norm uniformly in time. The proof is based on the elaborate energy analysis and the key point is to es...
متن کاملAnalysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit
In a previous work [8], a new numerical discretization of the Euler-Poisson system has been proposed. This scheme is ’Asymptotic Preserving’ in the quasineutral limit (i.e. when the Debye length ε tends to zero), which means that it becomes consistent with the limit model when ε → 0. In the present work, we show that the stability domain of the present scheme is independent of ε. This stability...
متن کاملNumerical approximation of the Euler-Maxwell model in the quasineutral limit
We derive and analyze an Asymptotic-Preserving scheme for the Euler-Maxwell system in the quasi-neutral limit. We prove that the linear stability condition on the time-step is independent of the scaled Debye length λ when λ → 0. Numerical validation performed on Riemann initial data and for a model Plasma Opening Switch device show that the AP-scheme is convergent to the Euler-Maxwell solution ...
متن کاملThe Initial Time Layer Problem and the Quasineutral Limit in the Semiconductor Drift–Diffusion Model
The classical time-dependent drift-diffusion model for semiconductors is considered for small scaled Debye length (which is a singular perturbation parameter multiplying the Laplace operator in the Poisson equation). The corresponding limit is carried out on both the dielectric relaxation time scale and the diffusion time scale. The latter is a quasineutral limit and the former can be interpret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2014
ISSN: 0893-9659
DOI: 10.1016/j.aml.2013.12.008